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Figure 1: A model of a dragon was first hollowed to reduce stress caused by its weight if held by the head (a). The stress decreased, but the
neck had to be still thickened (b,c). The object was still too front heavy causing a twist deformation on the legs (c), that was eliminated by
fixing the model to the pedestal by a strut (red) (d). These steps were done automatically by our system.

Abstract

The use of 3D printing has rapidly expanded in the past couple of
years. It is now possible to produce 3D-printed objects with excep-
tionally high fidelity and precision. However, although the quality
of 3D printing has improved, both the time to print and the material
costs have remained high. Moreover, there is no guarantee that a
printed model is structurally sound. The printed product often does
not survive cleaning, transportation, or handling, or it may even
collapse under its own weight. We present a system that addresses
this issue by providing automatic detection and correction of the
problematic cases. The structural problems are detected by com-
bining a lightweight structural analysis solver with 3D medial axis
approximations. After areas with high structural stress are found,
the model is corrected by combining three approaches: hollowing,
thickening, and strut insertion. Both detection and correction steps
are repeated until the problems have been eliminated. Our process
is designed to create a model that is visually similar to the original
model but possessing greater structural integrity.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;
I.3.8 [Computer Graphics]: Applications;

Keywords: 3D printing, structural analysis, physics-based model-
ing
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1 Introduction and Related Work

3D printing enables the physical realization of 3D shapes designed
using a computer. Originally, 3D printing referred to powder de-
position printing by Z Corporation, but since then it has been used
in connection with any additive manufacturing process [Shapeways
2011a], and the various techniques have become an important part
of rapid prototyping processes (see the list at [Engineering Hand-
book 2011]). A 3D printed object is created layer by layer, similar
to how a 2D image may be printed line by line. Fused deposition
modeling and jetting liquid polymer methods deposit or jet new ma-
terial for each layer of the printed object. Selective laser sintering,
electron beam melting, and powder deposition printing melt or bind
powdered material to produce the layers. Many manufacturers pro-
duce 3D printers, and their prices are rapidly dropping, though the
precision, printable color selections, and material types are increas-
ing, making them more accessible to the general public.

The promise of seamlessly moving creations from a virtual space
into reality is truly tantalizing, and its applications go far beyond
basic manufacturing and rapid prototyping. Unfortunately, many
obstacles remain for 3D printing to be practical and commonplace.
Although the quality of 3D printing has increased, both the time to
print and the material costs have remained high. For a model to be
3D printable, it must meet a set of topological requirements to en-
sure that its interior and exterior volumes are clearly defined. This
is usually achieved by making the input mesh a watertight manifold
surface. Producing watertight manifold models from, for example,
point clouds or surface representations has been well studied and is
available in existing systems [Hornung and Kobbelt 2006; Liu et al.
2007]. Another common requirement is that the input mesh has
no parts thinner than the printer can print. However, these require-
ments do not reflect the structural stability of the model. The man-
ufactured objects are commonly so fragile that they do not survive
transportation, cannot be handled, and even collapse under their
own weight.

Whereas the structural properties are a well-studied subject in other
disciplines such as mechanical engineering, printability of virtual
objects for 3D were addressed only in a limited extent within the
context of Computer Graphics. In this context, procedural methods
have been coupled with physics-based analysis for masonry build-
ings [Whiting et al. 2009] and structural analysis has been used for
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3D virtual growth of plants and environmental response [Jirasek
et al. 2000; Hart et al. 2003]. In general, a structurally stable
object can be obtained using methods based on shape optimiza-
tion [Allaire 2002; Haslinger and Mäkinen 2003], where the ge-
ometry of a 3D model is modified to minimize certain objective
function. However, this approach is computationally very expen-
sive for even moderately complex input models (see Section 4.5 for
more details). Companies providing 3D printing usually publish
a set of constraints that any 3D model should satisfy before it is
printed [Shapeways 2011b; Z Corporation 2011] and users are thus
responsible to manually check and correct the model before print-
ing. This process can be very cumbersome and time-consuming
even for experienced users. Also, these constraints define only lo-
cal properties, such as minimal thickness, and they do not capture
all possible structural problems. The first automatic method devised
to detect structural issues of printed objects was proposed by [Telea
and Jalba 2011]. The method detects thin and thick parts and then
uses a set of basic geometric rules to determine whether a given thin
part can support its attached parts. Although the method detects
some problematic cases, it lacks the structural analysis component
necessary to accurately approximate stress in more complex topo-
logical forms. Furthermore, this work does not address the funda-
mental goal of correcting the detected structural issues. Even in the
presence of perfect analysis, it may not be obvious or easy for the
user to know where to start making corrections. In our work, we
underscore the importance of having both computer-assisted cor-
rection and detection combined in a tightly coupled system.

We propose a first step in the direction of physically based auto-
matic solutions for the detection and correction of major structural
problems in 3D models before they are printed, while attempting
to minimally alter their appearance as shown in Fig. 1. We first
detect major printability issues of the input model through print-
ability assessments. In our work, we focus on structural problems
resulting from forces that can occur when the object is standing or
when it is held at probable locations, such as pedestals or appro-
priately sized handles. We then correct the model by using three
different approaches: local thickening, strut adding, and hollowing.
Local thickening increases the strength of the object’s thin parts,
and it preserves the form and the surface detail of the object. Struts
can be inserted to prevent nonrigid deformations of the object, and
they are automatically placed at locations that are least visible to
the user. Hollowing eliminates material inside the object, reducing
the weight of certain parts to alleviate the stress at other locations.
Hollowing may also lower the cost by reducing the amount of used
material. The correction technique is chosen based on the visual
impact on the result, and it can be further adjusted by user parame-
ters. After a correction is made, the process repeats until all struc-
tural problems are eliminated. We show our technique on various
objects, such as game characters or technical models. We measured
the stress on original and corrected objects, and we experimentally
verified that the corrected models are more robust. Our paper con-
tinues with a description of the overall schema of the system in
Section 2.

2 System Pipeline

Figure 2 shows the overall schema of our system. The input model
is a triangular watertight mesh representing a 3D manifold that is
analyzed to detect possible structural problems. We first detect is-
sues resulting from gravity acting on a standing object and from
humans manipulating it by pressing the object at various handling
points. The model is then iteratively evaluated and corrected. At
each iteration the structural analysis module reports whether the
stress is above the desired level, and the best model correction op-
tion is evaluated and chosen. The options for the structural model

corrections are (1) adding a strut (2) thickening some parts, or
(3) hollowing some part of the model. Care is taken not to modify
the model in a way that would cause a significant visual alteration.
The result is a modified triangular mesh with improved structural
properties. In the following text, we discuss individual modules of
the pipeline in detail. The structural problems of general objects are
very complex because they depend on the material, printer, and the
object itself; thus the complete solution is not within the scope of
this paper. We present a general pipeline and a solution that can be
applied to a wide variety of input models printed on an arbitrary 3D
printer. Please note that the implementation of individual modules
can be adjusted to provide better accuracy or to meet requirements
that are specific to the used 3D printing technology or to the type of
the printed object.

Figure 2: The overall schema of our method. The potential struc-
tural loads are generated and the object is repeatedly analyzed
for structural problems that are corrected by one of the three pro-
posed methods. The analysis stops when the stress is under a user-
specified level.

3 Printability Analysis

Printing a 3D object is a complex process. Each printer manufac-
turer provides its own printer drivers that address some issues. For
example, to print an object with concave or topologically discon-
nected parts, a support medium is introduced. Once the model has
been printed, the support must be removed by blowing, melting,
or washing. A successfully printed model must not only survive
printing, but also subsequent handling during the cleanup phase and
regular use.

To perform printability analysis, we first determine the most prob-
able structural loads that the object may be subject to. Each load is
defined by a set of forces and constraints that are used for a physi-
cally based structural analysis of the object.

3.1 Determining Structural Loads

It would be difficult to determine all possible structural loads that
a given object must withstand; thus we are looking only for the set
of highly probable cases. We divide the loads into two categories:
permanent and imposed. Permanent loads occur when the object
is placed in a resting position on a flat surface. It is deformed by
gravity while its movement is constrained by the flat plane where it
rests. Imposed loads capture situations when the object is handled
and is thus subject to both gravity and external forces.

Permanent Loads To determine the permanent loads we find a
set of orientations for which the object can be stably placed onto
a flat surface. Each orientation is tested to determine whether the
model can support its own weight. We assume that the model’s
default upright orientation is known. However, it may be automati-
cally determined by the algorithm of Fu et al. [2008]. We find a set
of additional valid orientations for the object placement by closely
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Figure 3: The convex hull and the center of mass are used to find
the most probable rest orientations of the object.

following concepts detailed in [Fu et al. 2008]. We compute the
convex hull of the object along with its center of mass (see Fig. 3).
Each face of the convex hull represents a candidate orientation for
placing the object on a flat surface. We test each face by orthogo-
nally projecting the center of mass onto the face plane. If the pro-
jected center falls outside the face, the configuration is unstable. We
sort the stable faces by their decreasing area and then move the de-
fault orientation to the head of the list. The area criterion provides
a simple heuristic to prioritize the more likely orientations if the
object were to be randomly placed down. The prioritized ordering
allows test cases to be truncated into a smaller set when computing
resources are limited. We note that the set of cases may be reduced
further by exploiting symmetries.

Imposed Loads An object can be manipulated in many differ-
ent ways. Because of the physical size of objects that are usually
printed, we restrict ourselves to the analysis of loads generated by a
pinch grip, where the object is grasped by two fingers. Two-finger
grips represent only a limited sub-set of possible handling config-
urations, but they are especially important for printability analysis
because the forces applied to the model are higher when only two
fingers are used.

To further reduce the search space of grip configurations, we first
create a set of plausible grip positions that are then evaluated and
from which the best ones are selected. To determine plausible grip
positions, we first mark each face center of the input mesh as a
possible grasp site P1 for the first finger. For each site P1, we define
a set of grip directions that determine the axis of a single pinch
grip. The set of directions should represent the most natural ways
by which a person would grasp the given object.

As shown in [Balasubramanian et al. 2010], people tend to instinc-
tively hold objects in such ways that the center of the mass is located
either in the grip axis itself or somewhere on the plane defined by
the grip axis and the gravity vector. To find such configurations for
every site P1, we define one grip direction that connects the site to
the center of the object’s mass and one direction that points to the
center of mass projected to a plane that is parallel to the ground
level. Another common case is holding the object by some local
feature, such as the handle of a cup. We capture these cases by cre-
ating a grip direction that points to the closest point on the medial
axis to P1, and we create one ray for each of these directions. We
then find all intersections of the ray with the object, and for each
one we create a second grasp site P2 that, together with the given
site P1, forms a grip configuration GP1,P2.

The above process results in a large number of possible grip con-
figurations that is lessened by analyzing geometric properties of the
grip configurations and checking how accessible they are for human

fingers. The value of each configuration ΛG is then computed as

ΛG =
∏

p∈{P1,P2}

(
nAp · lG,p

)
OG(p), (1)

where we compare the grip axis direction lG,p to the average nor-
mal direction nAp on the grasped surface Ap. The size of the sur-
face Ap is defined by the average size of a human finger and its
center is the position p of a given grasp site P . This ensures that
we preferably choose grip configurations where the grasped surface
is flat and aligned with the grip axis. The accessibility of each site
is then estimated using ambient occlusion OG(p).

We select NG grip configurations with highest Λ while keeping
them significantly different from each other. Equation (1) would
lead to similar Λ values for closely located grip configurations. For
each selected grip configuration Gs, we multiply the value of Λ for
all remaining configurations with a penalty term

√
dGi,Gs , where

dGi,Gs is the average geodesic distance between grip sites.

The force Fgrip of the grip is evaluated using an empirical model
of [Kinoshita et al. 1997] that predicts the grip force based on the
tangential force Ft and the tangential torque Tz on the fingers hold-
ing the object:

Fgrip =
Ft
µi

+
|Tz|
µrot

− 0.011

µi
Ft|Tz|, (2)

where µi and µrot are the coefficients of linear and rotational fric-
tion, respectively, and their values are determined by the properties
of the material. The tangential force is Ft = Fg(|lG × g|), where
g is the direction of gravity and Fg is the gravitational force. The
value of tangential torque depends on the relative positions of the
grasp sites p1 and p2 to the center of mass of the object co as
Tz = Fg

∑
i=1,2 lG · ((pi − co)× g).

Note that if the grip axis lG is parallel to g, both Ft and Tz are zero
and the given grip requires no force. However, it is still important to
test these configurations because the effects of gravity alone might
be significant, especially when lG is far away from the center of
mass of the object. An example of the first five detected pinch grips
for a model of a kitten is shown in Fig. 4.

Figure 4: Pinch grip positions. Each grip pair has the same color.

3.2 Structural Analysis

The structural stability of a printed model depends on the com-
puted load cases and on the printing technology and material that
are used. To make our approach applicable to a wide variety of 3D
printing settings, we compute the stability from the solution of the
linear elasticity problem considering a homogenous material. The
accuracy of the structural analysis can be improved by using more-
advanced methods targeted at specific 3D printers and materials.
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The input object is converted into a tetrahedral mesh using method
in [Si 2011], and the stress is computed from the solution of the
discrete linear elasticity problem using the Finite Element Method
(FEM) with quadratic tetrahedral elements [Hughes 1987]:

Kd = F, (3)

where K is the stiffness matrix and d is the deformation of the mesh
caused by external and internal forces represented by F.

The tetrahedral mesh and the material properties are used to com-
pute the stiffness matrix K of the linear system that is reused for all
load scenarios. Each load yields the boundary conditions and the
right-hand side F as described in Section 3.2.1. The solution to the
linear elasticity problem is a vector of deformations d of the input
mesh under the given input conditions. The deformations are used
to compute the strain and stress in the input mesh using Cauchy’s
linear strain tensor and Hooke’s law, respectively. To determine
the structural problems, we use the von Mises yield criterion [von
Mises 1913] that specifies the critical value of von Mises.

3.2.1 Analysis of Loads

To solve the system in Eq. (3) for a given load scenario, we need
to define the boundary conditions and the right-hand side F. The
boundary conditions specify fixed vertices of the tetrahedral mesh
that have a prescribed deformation dv equal to zero. The right-
hand side F is computed from the body forces and external forces
that affect the printed object, and it can be decomposed into the sum
of elemental contributions F =

∑
fe that are defined as

fe =

∫
Ωe

NTb dΩ +

∫
Γe

NT t dΓ, (4)

where Ωe is a tetrahedral element e, Γe is one face of the tetrahe-
dron, N is the matrix of quadratic basis functions, b is the body
force on the element (in our case only gravity), and t is the surface
load at the given face of an element.

Permanent loads are caused by gravity acting on an object stand-
ing on a flat surface; therefore the fixed vertices can be identified by
locating all vertices that lie within some distance to the flat surface.
Also, the only force affecting the object is gravity (a body force b
in Eq. (4)). The surface load t = 0 everywhere on the object. To
compute the right-hand side F we need to integrate the gravity over
each element Ωe. Since we use quadratic basis functions, an accu-
rate integral can be computed using numerical integration based on
the Gaussian quadrature rule [Golub and Welsch 1967].

Imposed loads are caused by two fingers holding the object, sub-
jecting the object to both gravity and external forces generated by
the grip itself. We decompose the problem into two different cases:
one to account for gravity without any external forces and one to
analyze the pressure caused by the grip while ignoring the effects
of gravity. The decomposition is necessary because the structural
analysis method does not support friction, which forces us to fix all
grasped sites when testing the effects of gravity. The fixed site then
defines new boundary conditions of our system while the right-hand
side is computed in the same way as for the permanent loads.

When testing the pressure caused by the grip, we fix all points that
are grasped by one finger while we apply the entire required grip
force vector Fgrip = FgriplG to all affected mesh faces ΓG that
are located under the second grasp site. The load tτ that affects a
given mesh face τ is computed from its size and orientation:

tτ = Fgrip
max(0,−nτ · Fgrip)∑

γ∈Γg
Aγ max(0,−nγ · Fgrip)

, (5)

where A is the area of a given face and n is its normal.

3.2.2 Stress Analysis

Once all boundary conditions and forces are defined, the system
from Eq. (3) is solved and the deformation of the mesh is computed.
The deformation is then used to solve the linear strain tensor ε and
stress tensor σ:

ε =
1

2
((∇d)T +∇d) (6)

σ = Cε, (7)

where C is the elasticity matrix that contains properties of the
printed material.

To compute the critical level of the stress, we use the von Mises
yield criterion [von Mises 1913] that compares the von Mises stress
σvm with a material-specific yield strength Sm. The value of von
Mises stress is

σ2
vm =

(∆σ1,2)2 + (∆σ2,3)2 + (∆σ3,1)2 + 6(σ2
12 + σ2

23 + σ2
31)

2
,

(8)
where ∆σi,j = σii − σjj .

The critical level of the stress σc is then defined as σc = λSm,
where λ is a constant 0 < λ < 1 that specifies the maximum
allowed value of stress with respect to the yield strength of the ma-
terial Sm. By decreasing the value of λ, we increase the sensitivity
of our method so that it detects more printability problems but can
lead to a generation of false positives. From our experiments, a
value λ = 0.2 provides reasonable results. At the end, we compare
the maximum value of the von Mises stress maxσv with the maxi-
mum allowed critical stress σc. If the value of the von Mises stress
is higher than the critical value, we say that the input object has a
printability problem.

4 Printability Corrections

A detected printability problem indicates that it may be unsafe to
print the object in its current state. To remove these problem, we
reduce the stress in the input object so that it is below a given critical
value σc that specifies a potential structural failure of the used ma-
terial by using local thickening, strut adding, and hollowing. The
particular correction is automatically selected based on its impact
on the visual appearance of the model and its effectiveness.

First, we pick the structural load that is associated with the highest
stress in the tested model. We then apply each of our model correc-
tion methods and generate a list of all possible corrections. There
could be more than one suggested correction for each of the three
methods. Every correction from the list is evaluated for its effec-
tiveness δeψ and for its impact on the appearance δvψ . These factors
are then used to compute the final cost of each correction γ as

γ = wψ(weδ
e
ψ + wvδ

v
ψ), (9)

where wψ is a user-defined weight of a given type of printability
correction, and we and wv are weights defining the importance of
effectiveness and visual appearance, respectively. A correction with
the lowest cost is then applied. For most of the analyzed objects, we
used an equal weight wψ for all corrections, while the effectiveness
and visual importance were set to we = 0.7 and wv = 0.3.

4.1 Medial Geometry Analysis

The results of the structural analysis are stored in a 3D tetrahedral
grid that represents the object. In general, the structure of 3D ob-
jects can be complicated; therefore we reduce the degree of com-
plexity of the problem by analyzing the computed stress on the me-
dial axis of the object rather than on the object itself.
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Figure 5: The interior medial axis simplifies the analysis of the
results. Red indicates areas of high stress.

Figure 6: It is not sufficient to apply thickening locally on highly
stressed parts of the model (in red) (left) because the stress would
be simply moved somewhere else (right).

We first construct an approximate medial axis for both the interior
and exterior of the object following the method described in Dey
and Zhao [2003]. The medial axis is prone to include minor surface
perturbations, which may result in many extraneous branches that
often correspond to insignificant surface details. We remove these
branches using a topology-preserving pruning based on a separation
angle strategy as described in Liu et al. [2010]. The value of the
separation angle can be used to define the size of the surface detail
that we want to preserve.

Lastly, we compute the maximal stress for every medial point on the
interior medial axis by gathering the maximum stress value from its
associated nearest tetrahedrons (see Fig. 5).

4.2 Local Thickening

Many of the structural problems are caused by excessive stress in
thin parts of the printed object that can easily break or fracture. The
goal of local thickening is to identify and fix the problematic thin
parts of the model.

Component Analysis We first identify candidate parts for thick-
ening. The excessive stress is often concentrated only in a limited
volume, but in general it is not sufficient to thicken the mesh only
around the stressed areas, because such an operation would only
move the stress somewhere else (see Fig. 6). To solve this problem,
we must identify the entire thin component that should be thick-
ened as a whole. When such a component is thickened, the stress is
redistributed evenly across its entire volume, which effectively re-
duces the stress below the critical value. Also, a small thickening of
a large part of the model has a smaller visual impact than excessive
modification of a local part.

To determine which part of the mesh should be considered a thin
component, we need to take into account the value of the stress that
we want to reduce. When the stress is high, we need to thicken
larger parts of the model than when the stress is less. We use com-
bined information about the stress and about the local thickness and
topology that is stored on the computed interior medial axis, as de-
scribed in Section 4.1.

a) b)

c) d)

Figure 7: To reduce the stress in the object (a), we identify the
linear chains of the medial axis with an excessive stress. (b). The
part of the component that must be thickened is determined by the
value of the stress and by the distance of individual vertices from the
medial points of the component (c). The thickness of the component
together with the stress is used to compute a thickening correction
(d).

We limit the length of components that can be thinned by non-
manifold junctions in the medial axis as shown in Fig. 7 and by
the threshold thickness that separates a given thin part from thick
parts. To compute the threshold thickness, we take the location of
the maximal stress σm and find its closest medial point. Based on
the local thickness tm associated with the medial point, we can then
compute a new thickness td that would reduce the stress to the al-
lowed critical value σc. Since most of the problematic components
resemble thin tubes, we simplify the situation by assuming that
the component has a beam shape with a circular cross-section. If
needed, this approximation can be improved by detecting the actual
cross-section of the component at the point with the highest stress.
Using the second modulus of a cross-section, it can be shown that
the stress σ caused by bending forces on a beam is directly related
to the thickness t of the cross-section as

σ = cb/t
3, (10)

where cb is a constant value specific for a given position at the beam
that is independent to the local thickness t. Please note that this
relation is valid only when the beam is subject to bending forces,
and it does not hold for general cases. However, most cases that will
be encountered when handling a printed object would result either
in bending forces or axial forces. Axial forces usually result in
lower stress than bending forces, thus thickening the surface enough
to reduce the bending forces sufficiently reduces stress to also cover
axial forces.

We can then use Eq. (10) to determine the target thickness td as

td = tm
3
√
σm/σc. (11)

The threshold thickness tt that separates the thin part from the thick
parts is defined as tt = cttd, where ct is a predefined constant (we
set ct = 1.1 in all our examples).

We then compute the set of points on the medial axis that are
bounded by the threshold thickness. The surface region correspond-
ing to these medial points defines the thin components of the mesh.
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Mesh Displacement To make a given thin component thicker,
we displace the original mesh away from the medial axis. We dis-
place only vertices whose distance tv to the nearest medial point on
the thin component is less than tt. The amount of displacement of
the given vertex is computed as dv = (tt − tv)/2, where tt is the
threshold thickness of the given component.

The target offset surface can be generated using many existing tech-
niques, such as level sets [Cohen et al. 1996; Peng et al. 2004].
However, these methods do not preserve small surface details that
are important for the visual appearance of the models. To solve
this issue, we displace individual vertices away from their near-
est medial points. To avoid self-intersections, we displace the ver-
tices along a smooth distance field that is computed as a solution
to Laplace’s equation on a tetrahedral grid that discretizes space
within the exterior medial axis of the object. The grid contains a
single point for each medial vertex and for each surface vertex of
the mesh. All of these vertices are then used to define the boundary
conditions of Laplace’s equation, using their distance to the nearest
internal medial point. The system is then solved using the finite
element method with quadratic tetrahedral elements. The displace-
ment is equal to traversal of the resulting distance field, which is
implemented using the Runge-Kutta integration method [Butcher
2008]. The traversal ends when a given vertex reaches the distance
equal to tv

2
+ dv .

Thickening Evaluation The input model may contain several
thin components that are subject to excessive stress. Although we
might thicken the components one by one, but that might not al-
ways lead to the best structural and visual results. If we have sev-
eral problematic thin components, and if we thicken only one, the
thickened component might gather some stress from the remain-
ing others. This can lead to uneven thickening of different compo-
nents, even if their initial parameters are the same. Therefore when
we evaluate the thickening corrections, we compute the cost of all
combinations of nonoverlapping thickenings.

The effectiveness of a thickening correction δet that consists of nt
nonoverlapping thickenings is computed as

δet = wtσ
∏
i<nt

σc
σti

+ wtV
1

nt

∑
i<nt

Vti
Vci

, (12)

where σc is the critical stress as defined in Section 3.2.2. The value
of σti is the current maximal stress on the thickened component i,
and Vti is the new volume added to the original volume of the com-
ponent Vci . wtσ andwtV are user-defined weights that determine the
importance of stress reduction compared to the new volume of the
thickening. In our examples, we used wtσ = 0.8 and wtV = 0.2.

The visual impact of a thickening on the appearance of the ob-
ject can be determined from the changes in the visual profile of
the thickened component. We define the visual profile as the aver-
age visible area from several predefined directions. To compute the
profile, we render the scene from a set of nv view directions, and
we measure the number of pixels that were rendered for the given
component. For the evaluation, we measure the visual profile of
the original object ro, of the thin component rc, and of the thick-
ened component rc′ . The visual impact of one thickening is then
computed as

δvt =
1

nv

∑
i<nv

(
wtrc

rci
ro

+ wtrc′
rc′i
rci

)
, (13)

where weights wtrc and wtrc′ control the importance of choosing a
visually small part for thickening compared to the size of the whole
object and not locally changing the size too much, respectively.

Figure 8: An imposed pressure load caused an excessive stress in
the material (left). The search space for possible struts is limited
by a part of exterior medial axis (purple color) that automatically
identifies all concave parts of the input model for possible connec-
tions by a strut (right).

For our experiments, we used nv = 5 different directions sampled
over the hemisphere defined by the upright position of the object:
one direction pointing up and the remaining four uniformly dis-
tributed along a circle defined by a polar angle π/4. We found that
the default setting of wtrc = 0.3 and wtrc′ = 0.7 produced good
results.

4.3 Adding Struts

The local thickening can be effectively used to solve many of the
structural problems of the printed objects, but in certain cases, the
thin components that cause the printability issues are essential for
the object’s visual style. When they are made noticeably thicker, the
objects might be visually altered too much. Also, the local thicken-
ing is sometimes unfeasible from a practical point of view, such
as when the printed object consists of many interconnected thin
components, and to remove the stress, we would need to thicken
the whole object. Our second model correction technique attempts
to solve these problems by adding supporting structures, that is,
struts. Unlike local thickening that thickens affected components,
the struts are designed to remove the stress by addressing its cause,
which is a nonrigid deformation in the object. Our method automat-
ically places struts between parts that are deformed, which moves
the stress from the problematic parts into the struts.

Strut Location Detection We can usually find many different
struts that would effectively reduce the stress in the input object.
The suitability of each strut depends on several factors, including its
visibility, thickness, length, and many others (see below for more
details). To find a good location for a strut, we first detect a set of
all plausible strut locations and we evaluate them to select the best
ones.

Struts are essentially new, straight connections between two parts
of the object, which means that they can be constructed only in ex-
terior concave regions of the input objects;otherwise, drawing non-
intersecting line between end points of a strut would be impossible.
The concave regions can be directly identified from the exterior me-
dial axis, as described in Section 4.1. The exterior medial axis de-
fines sheets that every strut must intersect, which greatly reduces
the search space for possible struts (Fig. 8).

The struts can intersect the medial axis at any point and angle. To
obtain a finite number of struts, we find a subset of medial points
using a uniform sampling of the medial axis. Each point from this
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subset defines a set of struts that pass through the point at a few
predefined angles. The angles are computed from the normal vector
on the medial sheet and from the normal and deformation vectors
of the closest mesh vertices. Some of these struts may not be valid,
since they can point outside of the object. Therefore for every me-
dial point and every angle, we shoot a ray in both directions and we
check whether it intersects the input object. The intersection points
are the end points of a strut. In our examples we generated nine uni-
formly distributed directions for every medial point. We generate
additional struts by shooting rays from the end points of the struts
that are passing the medial points. The direction of these rays corre-
sponds to the direction of the deformation of the mesh surface at the
given point that is obtained from the structural analysis as explained
in Section 3.2. The struts obtained from these rays act, in general,
against the normal deformations of the object while they minimize
the effects of skew deformations, which are unwanted because they
can easily break the struts.

Strut Thickness The thickness of a strut depends on the strength
and orientation of forces that act on its end points. Unfortunately
these forces are unknown and cannot be directly computed from
the known displacement of the input object. Therefore we use an
approximate solution that usually leads to good results, noting that
if the computed thickness is insufficient, it would be thickened by
the local thickening correction later on.

To compute the thickness, we first find the most stressed medial
point that lies on a geodesic path along the medial axis between the
two end points of the strut. The stress value σm and the thickness
at the selected medial point is then used to compute a new desired
thickness of the component using Eq. (11). We use this thickness
as the thickness of the strut, which usually leads to a structurally
stable correction no matter the nature of forces affecting the ends
of the strut.

a) b)

c) d)

Figure 9: The most effective strut to reduce the stress of the object
from Fig. 8 (a). The geodesic curve connecting the strut end points
is marked in green, and the stress is significantly reduced across the
model (c). A strut that prefers the visual impact over efficiency (b)
transfers a portion of the stress from the left to the right; however,
it accumulates stress at the strut end points (d).

Strut Evaluation We estimate the thickness of a strut indepen-
dent of the forces that affect its end points, but in reality the ef-
ficiency of a strut is heavily influenced by its orientation and po-
sition. In general, struts that are subject to axial forces are more
stable compared to similar struts that must withstand many bending
forces. Therefore to evaluate the efficiency of a strut, we take into

consideration the direction of forces acting on the end points of the
strut. Although these forces are unknown, we can still estimate their
directions from the computed displacement d of the analyzed ob-
ject. To evaluate the locations pFp and directions Fdp of forces af-
fecting a given strut end point p, we compute a weighted sum of all
displacements of the medial points that are within some threshold
distance εd to the medial point associated with the point p. The vol-
ume of the object that is considered during evaluation of the effec-
tiveness of the strut is determined by εd. The amount of supported
volume mostly depends on the geodesic distance νs between the
two end points of the strut; therefore we set εd = νs/4. Fdp is then
decomposed into normal component Fnp and tangential component
Ftp with respect to the direction of the strut. Furthermore if the nor-
mal force is eccentric with respect to the position of the strut, we
need to compute the bending moment Mbp = (pc − pFp)×Fnp,
where pc is the midpoint of the strut. The total strength of nor-
mal force that affects the strut is then Fns = ‖Fnp0 − Fnp1‖, the
strength of tangential force is Fts = ‖Ftp0 − Ftp1‖, and the total
moment is Mbs = ‖Mbp0 + Mbp1‖.

We then evaluate the efficiency of a given strut as

δes = wsσ
σc
σm

Mbs + Fts
Fns

+ wsV
Vs
Vo
, (14)

where σm is the maximal stress detected between two end-points
of the strut, Vs is the volume of the strut, and Vo is the volume of
the printed object. Both factors can be weighted by users, similar
to the Eq. (12). In our examples we used wsσ = 0.8 while the effect
of the volume was only wsV = 0.2.

The visual impact of a strut is defined as

δvs = wsviOs
Vs
Vo
, (15)

where Os is the visibility of a given strut. We approximate the
visibility by computing the ambient occlusion on several sample
points on a surface of each strut. Because struts are visually more
disturbing than other corrections, we set the weight of the visual
importance to wsvi = 2. An example of selecting different struts
based on varying weights is shown in Fig. 9.

Strut Geometry When a strut is selected to correct the input ob-
ject, its geometric representation must be created, and it must then
be attached to the original mesh. The geometry of a strut is a tube
with both ends open and skewed according to the normal vector at
the target surface. Each open end of the tube is then projected to
the surface, and faces within a predefined geodesic distance to the
projected area are removed from the mesh. This creates an open
hole in the original mesh that must be connected to the end of the
tube by generating a new triangulation of the open space between
the two open holes. To do so, we first embed both holes into a cir-
cle as described in [Schmidt and Singh 2010]. Both circles are then
projected to a single plane, and a new triangulation is created using
the algorithm proposed by [Shewchuk 2001]. Vertices belonging to
the open holes are then projected back to the global space. The re-
maining new interior vertices of the connections are then smoothed
by solving a linear bi-Laplacian system [Andrews et al. 2011] that
is constrained by the positions and tangent vectors of the vertices
that belong to the open holes.

4.4 Hollowing

Should the excessive stress emerge during testing of the gravity ef-
fects of both permanent and imposed loads, we know that the source
of the stress must be the gravity force. Because the strength of the
gravity force depends on the mass of the object, we try to reduce its
effects by reducing the mass of the printed object.
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Problems caused by gravity usually emerge when we have a thick
component that is supported by thin components that cannot hold
its weight. Therefore we first use the maximal value of stress in the
model to identify thin components, applying the same method as
described in Section 4.2. All the remaining parts of the model are
then considered thick components.

Figure 10: Different loads might lead to different hollowing solu-
tions. If we hold the object by the top, only the bottom components
are hollowed (left). On the other hand, if the object sits on a surface
all spherical components are hollowed while the pedestal remains
intact (right).

To learn which parts should be hollowed, we select the thin compo-
nent with the highest value of stress and traverse the graph of thin
and thick components, adding all visited components to a marked
list. We do not allow traversal over any other thin components that
are subject to an excessive level of stress. If some marked compo-
nent reaches a fixed part of the tested load (floor surface or hold
positions), we remove all connected marked components from the
list. The remaining marked thick components are then hollowed
(see Fig. 10). The amount of hollowing is defined on every medial
point vm of the marked thick components by their hollowing thick-
ness thollow(vm). The thickness is determined by the amount of
volume that we want to remove from the thick components. Since in
general the stress scales linearly with the amount of applied force,
we can compute the hollowing thickness as

thollow(vm) = min

(
t(vm)− tmin, t(vm) 3

√
1− σc

σm

)
, (16)

where t(vm) is the current thickness on the given medial point,
tmin is some minimal allowed thickness of the printed material,
and σm is the maximal stress in the object.

The hollowing itself follows a modified approach that was used for
mesh displacement as explained in Section 4.2. Similarly, we com-
pute a distance field using Laplace’s equation, but with different
boundary conditions. For hollowing, the interior medial points that
belong to the marked thick components bound the Laplace’s equa-
tion by their thickness, and all mesh vertices define a zero thickness

boundary constraint. Once the distance field is computed, we nor-
malize the computed values based on thollow of the nearest medial
point to the given grid point. Lastly, we construct a new mesh that
represents the hole using a marching tetrahedron method for an iso-
surface with a value equal to 1.

a) b) c)

Figure 11: To create a hollowing correction, we compute a
distance field on the object’s interior using Laplace’s equation
bounded by the medial points of the hollowed component and the
vertices of the mesh (a). Marching tetrahedrons creates a new tri-
angular mesh that represents the hole (b), and the mesh is simplified
and applied to the object (c.)

Note that most 3D printing technologies use an additional material
to support the layers during printing of the object, and it is quite
likely that there would be some support material inside the hol-
lowed part. We need to add a small hole or holes into the structure
so that the support material can be cleaned or melted. Such holes
can be added manually before the support material is cleaned.

Lastly, hollowing can significantly affect the location of the cen-
ter of mass of the printed object. If the hollowing makes the object
unstable in its upright position, we automatically discard it and pro-
ceed with the next best model correction.

Hollowing Evaluation Hollowing has no visual impact on the ap-
pearance of the printed model. We evaluated hollowing as follows:

δeh = whσ
σc
σm

Vt
Vh
, (17)

where Vh is the actual volume of removed material, and Vt is the
target volume that we wanted to remove to reduce the stress below
the critical stress σc. The target volume is directly proportional to
the amount of stress that we want to reduce as Vt = Vo

σc
σm

. Since
hollowing is a preferred solution to most gravity-related issues, we
set its importance as whσ = 3.

4.5 Shape Optimization

The above-mentioned model correction techniques are essentially
heuristics that aim to reduce the amount of excessive stress under
the critical value while maintaining the visual appearance of the in-
put model. A general solution to this problem could be achieved by
using so-called shape optimization techniques. The goal of these
methods is to find the optimal geometry and topology of an in-
put shape that minimizes certain objective function such as compli-
ance [Allaire 2004] or the total stress in a shape [Allaire and Jouve
2008]. In our case, the goal would be to optimize the shape so that
it minimizes the amount of excessive stress under the given load
conditions while minimizing the visual difference from the original
input model. As shown in [Allaire 2004], shape optimization prob-
lems can be solved iteratively using the gradient descent algorithm,
where at each iteration the shape of the input model is deformed
along the derivative of the objective function. The output of the
algorithm is then an optimally corrected model that can be safely
printed.
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The main limitation of the shape optimization methods is their com-
putational cost. To accurately evaluate the gradient of the objective
function, we need to solve the linear elasticity problem whenever
the shape of the model is changed. To do so we need to recom-
pute the tetrahedral mesh, build a new stiffness matrix, and solve
the resulting system. All of these steps are computationally ex-
pensive and would need be performed during every iteration of the
optimization process. This would make the method too slow for
even moderately complex input models. Furthermore, shape opti-
mization methods can lead to topology changes that are difficult to
handle using our mesh-based approach. Allaire et al. [2004] pro-
posed a new shape optimization approach that relies on level-set
deformations of the initial shape [Osher and Sethian 1988] that au-
tomatically handles changing topologies. This approach also pro-
vides a performance benefit because the simulation mesh for linear
elasticity remains constant, as defined by the underlying Eulerian
grid. Unfortunately, to accurately represent the detail that can be
produced by the modern 3D printers, a very fine resolution grid
with millions of elements would need be used. Our approach is a
compromise between the speed and the output quality. We leave
the research of a feasible shape optimization for printability correc-
tions for future work. However, if a better or different solution is
developed, it can be readily added into our pipeline.

5 Results

We evaluated our methods practically by printing our objects us-
ing two 3D printers: the ObjetTMAlaris30 desktop printer and the
ObjetTMEden350V professional printer. Both printers use the same
printing pattern: the object is built by assembling thin layers of
material (thickness of one layer can be from 16 to 28 microns). Av-
erage printing time was 18 hours with three objects, and tray size
was 300x200x150mm.

The building process uses two kinds of material: primary and sup-
port. As a primary material, we used VeroWhiteTMrigid opaque ma-
terial and FullCure 720TMtransparent one. Both materials are based
on liquid polymers that solidify when exposed to UV light. After
solidification they have plastic-like structure with tensile strength
equal to 50MPa. Support material has a gel-like structure and helps
to support the incomplete object during printing. After printing,
the support material is washed away using a high pressure (up to
12MPa) water jet nozzle. The cleaning process proved to be dan-
gerous to printed models with thin parts because the high pressure
of the water jet can easily break them, as happened, for example, in
our banana model (Fig. 12), whose left arm broke during cleaning.

When we used our system to improve our input models, all three
methods were used: struts, thickening and hollowing. In all cases,
structural strength of the models improved significantly, and printed
models were more resistant to permanent and imposed loads.

Figure 12 shows an object that is unstable after printing and can be
easily broken because of very thin legs. Structural analysis showed
too much stress on the legs, and our system suggested adding a strut
at the back of the model. Subsequent analysis showed that the strut
was sufficient to alleviate the stress. We were able to confirm this
by printing a new version of the model, which proved to be stable.

Another example of adding struts is in Fig. 13. Although the model
of a soccer cup is able to stand still, it deforms easily when grabbed
by the supports that hold the ball. To relieve the stress, the system
iteratively added five interconnecting struts that created bridges be-
tween individual supports. Note that the struts are introduced in
areas where they have the least visual impact. Figure 14 shows a
model created using the SporeTMvideo game that has a weak spot
on the neck. This causes the head of the model to break off when
the object is grabbed by the head and tail. Our system detected this

Figure 12: A banana model printed without optimizations is quite
likely to break because of very thin legs. An optimized model with
an added strut shows much more structural strength.

issue and suggested the structure be locally thickened along this
weak spot. The thicker neck was then able to withstand the pres-
sure caused by the grip, the correction did not leave any significant
impact on the visual appearance of the model.

The example in Fig. 15 illustrates hollowing. A hollowed model of
a bunny consumed significantly less material than the full version
(56%) and was also lighter. To maintain structural strength, our
system also added six inner struts, as can be seen in Fig. 15 left.
Hollowing has no additional effect on visual appearance.

In conclusion, to correct a model of a dragon (Fig. 1), our sys-
tem used all three types of corrections. First, the system detected
that the neck cannot withstand the weight of the rest of the body
when the model is held by the head. The first fix was to hollow the
main body, but even though the stress decreased by approximately
25%, the remaining stress was still above the allowed limit. The
stress on the neck was fully removed after thickening was applied.
Then another problem emerged when the model was tested stand-
ing on a flat surface. The object is too front-heavy, causing twisting
and bending deformation on the legs, and this resulted in danger-
ous stress levels. The problem was automatically solved by fixing
the body of the dragon to the pedestal with a strut connected to the
dragon’s tail.

Table 1 lists the models we have used, the number of polygons rep-
resenting them, the types of correction, the maximum and average
stress of the model before and after correction, and the weight of
used material, also before and after the correction. The reduction
of the maximum stress indicates how well we fixed the problematic
area, and the average stress indicates whether we did not increase
the overall stress, for example, because of hollowing. We are less
concerned with average stress, since we focus on making the weak-
est parts of the model stronger.

6 Limitations and Future Work

Our system for automatic detection and correction of structural is-
sues in 3D printed objects has its limitations, but it could be ex-
tended in many directions. To provide fast solutions, we have used
many simplifications. One area for future research is a more thor-
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Model Polys (before/after) Corrections Max. stress [MPa] Avg. stress [KPa] Material [g]
Banana (Fig. 12) 19,352 / 19,540 1s 30.334 /5.872 (81%) 3.195 / 0.538 (83% ) 74 / 75 (1.4%)
Cup (Fig 13) 17,062 / 26,114 5s 22.967 / 7.590 (66%) 22.543 / 8.217 (64%) 161 /161 (0%)
Bunny (Fig 15) 83644 / 88530 1h,6s 4.526 / 2.328 (49%) 9.205 / 7.233 (21%) 455 / 198 (56%)
Shell (Fig 10) 12,660 / 15,508 2s 5.541 / 1.884 (64%) 233.786 / 66.316 (72%) 46 / 49 (6.5%)
Molecule (see video) 3,816 / 3,816 5t 11.1 / 4.083 (63%) 18.035 / 14.166 (21%) 137 / 147 (7.3%)
SporeTM(Fig 10) 11,180 / 11,082 1t 17.817 / 4.881 (73%) 4.985 / 4.543 (9%) 103 / 104 (1%)
Dragon (Fig 1) 20572 / 9984 1t,1h,1s 29.092 / 6.048 (79%) 6.139 / 5.283 (14%) 124 / 105 (15%)

Table 1: Algorithm performance with respect to stress relief and material use. The applied number and types of corrections for each model is
provided with s, t, and h to denote strut, thickening, and hollowing, respectively. The other values are formatted as before / after (change%).
Note that when measuring the stress on the bunny, we compared the stress in the hollowed bunny with the stress in the reinforced one.

a) b)

Figure 13: The handle of the soccer cup can break under pressure
of the grip (a). Our method automatically connects all parts of the
handle together by means of five different struts (b).

ough evaluation of grip positions on the object that can vary for
different objects and users, among other things. Another area of
improvement is structural analysis. The structural analysis pre-
sented in this paper works accurately only when the used material
is homogenous and rigid. In reality, many of the used materials are
plastic with nonhomogeneous properties caused by the layering of
the material during printing. New printers can also print multiple
materials at the same time, which is not directly supported by our
method. Such situations require more advanced structural analysis
as well as model specification. Improving the accuracy and preci-
sion with a better physical simulation can enhance our results by
providing greater predictability.

Next, although we try to limit the visual impact of the model cor-
rection methods, we note that some of the corrections, especially
struts, might alter the visual appearance of the printed object more
than desired. The visual impact of struts can be reduced if their
geometry and shape follow the visual style of the printed object.
A detailed user study should be done to determine which structural
changes are acceptable for which class of objects. We can speculate
that adding struts to objects representing living objects will be less
tolerated than doing the same for art objects.

Although our method generates good results for most tested cases,
some scenarios remain that are not captured efficiently. First of
all, we do not detect structural problems that might arise when the

Figure 14: The thin neck of a SporeTMcreature can snap easily if
the printed model is held by its head and tail. Our local thickening
correction strengthens the neck without a significant effect on the
visual appearance of the model.

model is cleaned after printing. If the cleaning is done by melting
the support material away in hot water, for example, there is no
additional stress. However, some cleaning involves the use of a
water stream that may add more stress to some parts. Evaluation of
such stresses should be further investigated.

Lastly, our current system is limited to the analysis and correction
of static models. Many CAD-type models may have movable parts
such as hinges, joints, wheels, bearings, and cogs. It is important
not only to evaluate stress in the various configurations, but also to
ensure that any corrections do not constrain the intended motion of
the model. Especially important is taking into account a model’s de-

Figure 15: Example of hollowing. A hole is created in the object
to save material and to lighten the whole object. Inner struts are
added to maintain structural strength.
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sired function as part of a printability analysis. It might sometimes
be possible to deduce an object’s function from its form without
need of additional user intervention.

7 Conclusions

We have detailed an automatic system for both detecting and cor-
recting 3D printability issues in static models. To our knowledge,
our work is the first to combine both physically based analysis with
automatic geometric corrections in a single unified system for im-
proving printability. We believe that our system aids both novices
and experts in resolving issues prior to costly printing (both in time
and money). Such technology is increasingly important as 3D print-
ers become available for consumers. Although our work provides a
strong foundation, we identified several challenging future research
directions in the area of 3D printability.
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